Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.228
Filtrar
1.
Elife ; 122024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38517752

RESUMO

The vesicular monoamine transporter 2 (VMAT2) is a proton-dependent antiporter responsible for loading monoamine neurotransmitters into synaptic vesicles. Dysregulation of VMAT2 can lead to several neuropsychiatric disorders including Parkinson's disease and schizophrenia. Furthermore, drugs such as amphetamine and MDMA are known to act on VMAT2, exemplifying its role in the mechanisms of actions for drugs of abuse. Despite VMAT2's importance, there remains a critical lack of mechanistic understanding, largely driven by a lack of structural information. Here, we report a 3.1 Å resolution cryo-electron microscopy (cryo-EM) structure of VMAT2 complexed with tetrabenazine (TBZ), a non-competitive inhibitor used in the treatment of Huntington's chorea. We find TBZ interacts with residues in a central binding site, locking VMAT2 in an occluded conformation and providing a mechanistic basis for non-competitive inhibition. We further identify residues critical for cytosolic and lumenal gating, including a cluster of hydrophobic residues which are involved in a lumenal gating strategy. Our structure also highlights three distinct polar networks that may determine VMAT2 conformational dynamics and play a role in proton transduction. The structure elucidates mechanisms of VMAT2 inhibition and transport, providing insights into VMAT2 architecture, function, and the design of small-molecule therapeutics.


Assuntos
Doença de Huntington , Tetrabenazina , Humanos , Tetrabenazina/metabolismo , Tetrabenazina/farmacologia , Proteínas Vesiculares de Transporte de Monoamina/química , Proteínas Vesiculares de Transporte de Monoamina/metabolismo , Prótons , Microscopia Crioeletrônica
2.
Artigo em Inglês | MEDLINE | ID: mdl-38497033

RESUMO

Background: Tardive Dyskinesia (TD) is a neurological disorder characterized by involuntary movements, often caused by dopamine receptor antagonists. Vesicular Monoamine Transporter 2 (VMAT2) inhibitors, such as valbenazine and deutetrabenazine, have emerged as promising therapies for TD and several clinical trials have shown their efficacy. This study aims to compare the efficacy and safety profile of VMAT2 inhibitors, focusing on a recent trial conducted in the Asian population. Methods: We reviewed the PubMed, Cochrane Library, Embase database, and clinicaltrials.gov between January 2017 and October 2023, using the keywords "tardive dyskinesia" AND ("valbenazine" [all fields] OR " deutetrabenazine " [all fields]) AND "clinical trial". The reviewed articles were studied for efficacy and side effects. Results: An initial search yielded 230 articles, of which 104 were duplicates. Following the title and abstract screening, 25 additional articles were excluded. A full-text review resulted in the exclusion of 96 more articles. Ultimately, four double-blind clinical trials met the inclusion criteria. The deutetrabenazine studies demonstrated significant improvements in Abnormal Involuntary Movement Scale (AIMS) scores compared to placebo, with no difference in adverse events. The valbenazine studies showed favorable results in reducing TD symptoms and were well-tolerated. Discussion: The studies reviewed in this analysis underscore the potential of deutetrabenazine and valbenazine as valuable treatment options for TD in diverse populations. Both medications demonstrated significant improvements in AIMS scores, suggesting their effectiveness in managing TD symptoms. Additionally, they exhibited favorable safety profiles, with low rates of serious adverse events and no significant increase in QT prolongation, parkinsonism, suicidal ideation, or mortality. Conclusion: The studies reviewed highlight the promising efficacy and tolerability of deutetrabenazine and valbenazine as treatments for Tardive Dyskinesia, providing new hope for individuals affected by this challenging condition.


Assuntos
Discinesia Tardia , Tetrabenazina , Valina , Humanos , Ensaios Clínicos Controlados Aleatórios como Assunto , Discinesia Tardia/tratamento farmacológico , Discinesia Tardia/induzido quimicamente , Tetrabenazina/efeitos adversos , Tetrabenazina/análogos & derivados , Tetrabenazina/uso terapêutico , Valina/análogos & derivados , Proteínas Vesiculares de Transporte de Monoamina
3.
Environ Toxicol Pharmacol ; 107: 104399, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38403141

RESUMO

ß-N-methylamino-l-alanine (BMAA) has been shown to inhibit vesicular monoamine transporter 2 (VMAT2), thereby preventing the uptake of monoaminergic neurotransmitters into platelet dense granules and synaptic vesicles. The inhibition is hypothesized to be through direct association of BMAA with hydroxyl groupꟷcontaining amino acid residues in VMAT2. This study evaluated whether BMAA-induced inhibition of VMAT2 could be prevented directly by co-incubation of BMAA with amino acids, and if this protection was specific for BMAA inhibition of VMAT2. l-tyrosine, and to a lesser extent l-serine, was able to prevent BMAA-induced VMAT2 inhibition in a concentration-dependent manner, whereas neither l-threonine nor amino acids without side chain hydroxyl groups could reduce this inhibition. Reserpine-induced VMAT2 inhibition was unaffected by any of the amino acids. These data support the hypothesized interaction between BMAA and hydroxyl groupꟷcontaining amino acids and suggests that this interaction might be leveraged to protect against the toxicity of BMAA.


Assuntos
Diamino Aminoácidos , Aminoácidos , Aminoácidos/farmacologia , Proteínas Vesiculares de Transporte de Monoamina , Diamino Aminoácidos/toxicidade , Tirosina , Neurotoxinas/metabolismo
4.
Cell Res ; 34(1): 47-57, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38163846

RESUMO

Monoamine neurotransmitters such as serotonin and dopamine are loaded by vesicular monoamine transporter 2 (VMAT2) into synaptic vesicles for storage and subsequent release in neurons. Impaired VMAT2 function underlies various neuropsychiatric diseases. VMAT2 inhibitors reserpine and tetrabenazine are used to treat hypertension, movement disorders associated with Huntington's Disease and Tardive Dyskinesia. Despite its physiological and pharmacological significance, the structural basis underlying VMAT2 substrate recognition and its inhibition by various inhibitors remains unknown. Here we present cryo-EM structures of human apo VMAT2 in addition to states bound to serotonin, tetrabenazine, and reserpine. These structures collectively capture three states, namely the lumen-facing, occluded, and cytosol-facing conformations. Notably, tetrabenazine induces a substantial rearrangement of TM2 and TM7, extending beyond the typical rocker-switch movement. These functionally dynamic snapshots, complemented by biochemical analysis, unveil the essential components responsible for ligand recognition, elucidate the proton-driven exchange cycle, and provide a framework to design improved pharmaceutics targeting VMAT2.


Assuntos
Tetrabenazina , Proteínas Vesiculares de Transporte de Monoamina , Humanos , Reserpina , Serotonina/metabolismo , Vesículas Sinápticas/metabolismo , Tetrabenazina/farmacologia , Tetrabenazina/metabolismo , Proteínas Vesiculares de Transporte de Monoamina/metabolismo
5.
Psychopharmacology (Berl) ; 241(2): 225-241, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38238580

RESUMO

RATIONALE: Dopamine antagonists induce dopamine receptor supersensitivity. This may manifest in late-appearing movement disorders (tardive dyskinesia (TD). VMAT-2 inhibitors reduce dopaminergic transmission but have limited activity at postsynaptic receptors and so may have antipsychotic activity with lower risk of tardive dyskinesia. METHODS: We conducted a systematic database search from inception to September 2022 for articles describing the use of VMAT-2 inhibitors in psychosis. Inclusion criteria were as follows: Population: adults diagnosed with psychosis or schizophrenia; Intervention: treatment with tetrabenazine, deutetrabenazine or valbenazine; Comparison: comparison with placebo or/and antipsychotic drug; Outcomes: with efficacy outcomes (e.g. Brief Psychiatric Rating Scale (BPRS) change or clinician assessment) and adverse effects ratings (e.g. rating scale or clinician assessment or dropouts); and Studies: in randomised controlled trials and non-randomised studies. RESULTS: We identified 4892 records relating to VMAT-2 inhibitor use of which 5 (173 participants) met our a priori meta-analysis inclusion criteria. VMAT-2 inhibitors were more effective than placebo for the outcome 'slight improvement' (risk ratio (RR) = 1.77 (95% CI 1.03, 3.04)) but not for 'moderate improvement' (RR 2.81 (95% CI 0.27, 29.17). VMAT-2 inhibitors were as effective as active comparators on both measures for-'slight improvement' (RR 1.05 (95% CI 0.6, 1.81)) and 'moderate improvement' (RR 1.11 (95% CI 0.51, 2.42). Antipsychotic efficacy was also suggested by a narrative review of 37 studies excluded from the meta-analysis. CONCLUSIONS: VMAT-2 inhibitors may have antipsychotic activity and may offer promise for treatment of psychosis with the potential for a reduced risk of TD.


Assuntos
Antipsicóticos , Transtornos Psicóticos , Esquizofrenia , Proteínas Vesiculares de Transporte de Monoamina , Adulto , Humanos , Antipsicóticos/efeitos adversos , Transtornos Psicóticos/tratamento farmacológico , Esquizofrenia/tratamento farmacológico , Discinesia Tardia/tratamento farmacológico , Tetrabenazina/uso terapêutico , Proteínas Vesiculares de Transporte de Monoamina/antagonistas & inibidores
6.
Nature ; 626(7998): 427-434, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38081299

RESUMO

Vesicular monoamine transporter 2 (VMAT2) accumulates monoamines in presynaptic vesicles for storage and exocytotic release, and has a vital role in monoaminergic neurotransmission1-3. Dysfunction of monoaminergic systems causes many neurological and psychiatric disorders, including Parkinson's disease, hyperkinetic movement disorders and depression4-6. Suppressing VMAT2 with reserpine and tetrabenazine alleviates symptoms of hypertension and Huntington's disease7,8, respectively. Here we describe cryo-electron microscopy structures of human VMAT2 complexed with serotonin and three clinical drugs at 3.5-2.8 Å, demonstrating the structural basis for transport and inhibition. Reserpine and ketanserin occupy the substrate-binding pocket and lock VMAT2 in cytoplasm-facing and lumen-facing states, respectively, whereas tetrabenazine binds in a VMAT2-specific pocket and traps VMAT2 in an occluded state. The structures in three distinct states also reveal the structural basis of the VMAT2 transport cycle. Our study establishes a structural foundation for the mechanistic understanding of substrate recognition, transport, drug inhibition and pharmacology of VMAT2 while shedding light on the rational design of potential therapeutic agents.


Assuntos
Microscopia Crioeletrônica , Proteínas Vesiculares de Transporte de Monoamina , Humanos , Sítios de Ligação , Citoplasma/efeitos dos fármacos , Citoplasma/metabolismo , Ketanserina/química , Ketanserina/metabolismo , Ketanserina/farmacologia , Reserpina/química , Reserpina/metabolismo , Reserpina/farmacologia , Serotonina/química , Serotonina/metabolismo , Especificidade por Substrato , Tetrabenazina/química , Tetrabenazina/metabolismo , Tetrabenazina/farmacologia , Proteínas Vesiculares de Transporte de Monoamina/antagonistas & inibidores , Proteínas Vesiculares de Transporte de Monoamina/química , Proteínas Vesiculares de Transporte de Monoamina/metabolismo , Proteínas Vesiculares de Transporte de Monoamina/ultraestrutura
7.
Pediatr Blood Cancer ; 71(1): e30743, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37885116

RESUMO

BACKGROUND: Prior studies suggest that norepinephrine transporter (NET) and vesicular monoamine transporter 2 (VMAT2) mediate meta-iodobenzylguanidine (MIBG) uptake and retention in neuroblastoma tumors. We evaluated the relationship between NET and VMAT2 tumor expression and clinical response to 131 I-MIBG therapy in patients with neuroblastoma. METHODS: Immunohistochemistry (IHC) was used to evaluate NET and VMAT2 protein expression levels on archival tumor samples (obtained at diagnosis or relapse) from patients with relapsed or refractory neuroblastoma treated with 131 I-MIBG. A composite protein expression H-score was determined by multiplying a semi-quantitative intensity value (0-3+) by the percentage of tumor cells expressing the protein. RESULTS: Tumor samples and clinical data were available for 106 patients, of whom 28.3% had partial response (PR) or higher. NET H-score was not significantly associated with response (≥PR), though the percentage of tumor cells expressing NET was lower among responders (median 80% for ≥PR vs. 90% for

Assuntos
3-Iodobenzilguanidina , Neuroblastoma , Humanos , 3-Iodobenzilguanidina/uso terapêutico , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/metabolismo , Proteínas Vesiculares de Transporte de Monoamina/metabolismo , Compostos Radiofarmacêuticos , Proteína Proto-Oncogênica N-Myc , Recidiva Local de Neoplasia/tratamento farmacológico , Neuroblastoma/tratamento farmacológico , Doença Crônica
8.
Nature ; 623(7989): 1086-1092, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37914936

RESUMO

Monoamine neurotransmitters such as dopamine and serotonin control important brain pathways, including movement, sleep, reward and mood1. Dysfunction of monoaminergic circuits has been implicated in various neurodegenerative and neuropsychiatric disorders2. Vesicular monoamine transporters (VMATs) pack monoamines into vesicles for synaptic release and are essential to neurotransmission3-5. VMATs are also therapeutic drug targets for a number of different conditions6-9. Despite the importance of these transporters, the mechanisms of substrate transport and drug inhibition of VMATs have remained elusive. Here we report cryo-electron microscopy structures of the human vesicular monoamine transporter VMAT2 in complex with the antichorea drug tetrabenazine, the antihypertensive drug reserpine or the substrate serotonin. Remarkably, the two drugs use completely distinct inhibition mechanisms. Tetrabenazine binds VMAT2 in a lumen-facing conformation, locking the luminal gating lid in an occluded state to arrest the transport cycle. By contrast, reserpine binds in a cytoplasm-facing conformation, expanding the vestibule and blocking substrate access. Structural analyses of VMAT2 also reveal the conformational changes following transporter isomerization that drive substrate transport into the vesicle. These findings provide a structural framework for understanding the physiology and pharmacology of neurotransmitter packaging by synaptic vesicular transporters.


Assuntos
Neurotransmissores , Reserpina , Serotonina , Tetrabenazina , Proteínas Vesiculares de Transporte de Monoamina , Humanos , Inibidores da Captação Adrenérgica/química , Inibidores da Captação Adrenérgica/farmacologia , Transporte Biológico/efeitos dos fármacos , Microscopia Crioeletrônica , Neurotransmissores/química , Neurotransmissores/farmacologia , Reserpina/química , Reserpina/farmacologia , Serotonina/metabolismo , Transmissão Sináptica , Tetrabenazina/química , Tetrabenazina/farmacologia , Proteínas Vesiculares de Transporte de Monoamina/antagonistas & inibidores , Proteínas Vesiculares de Transporte de Monoamina/química , Proteínas Vesiculares de Transporte de Monoamina/metabolismo , Proteínas Vesiculares de Transporte de Monoamina/ultraestrutura , Especificidade por Substrato/efeitos dos fármacos
9.
Exp Mol Med ; 55(11): 2357-2375, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37907739

RESUMO

Dopamine neurons are essential for voluntary movement, reward learning, and motivation, and their dysfunction is closely linked to various psychological and neurodegenerative diseases. Hence, understanding the detailed signaling mechanisms that functionally modulate dopamine neurons is crucial for the development of better therapeutic strategies against dopamine-related disorders. Phospholipase Cγ1 (PLCγ1) is a key enzyme in intracellular signaling that regulates diverse neuronal functions in the brain. It was proposed that PLCγ1 is implicated in the development of dopaminergic neurons, while the physiological function of PLCγ1 remains to be determined. In this study, we investigated the physiological role of PLCγ1, one of the key effector enzymes in intracellular signaling, in regulating dopaminergic function in vivo. We found that cell type-specific deletion of PLCγ1 does not adversely affect the development and cellular morphology of midbrain dopamine neurons but does facilitate dopamine release from dopaminergic axon terminals in the striatum. The enhancement of dopamine release was accompanied by increased colocalization of vesicular monoamine transporter 2 (VMAT2) at dopaminergic axon terminals. Notably, dopamine neuron-specific knockout of PLCγ1 also led to heightened expression and colocalization of synapsin III, which controls the trafficking of synaptic vesicles. Furthermore, the knockdown of VMAT2 and synapsin III in dopamine neurons resulted in a significant attenuation of dopamine release, while this attenuation was less severe in PLCγ1 cKO mice. Our findings suggest that PLCγ1 in dopamine neurons could critically modulate dopamine release at axon terminals by directly or indirectly interacting with synaptic machinery, including VMAT2 and synapsin III.


Assuntos
Dopamina , Proteínas Vesiculares de Transporte de Monoamina , Animais , Camundongos , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Terminações Pré-Sinápticas/metabolismo , Sinapsinas/genética , Sinapsinas/metabolismo , Proteínas Vesiculares de Transporte de Monoamina/genética , Proteínas Vesiculares de Transporte de Monoamina/metabolismo
10.
Proc Natl Acad Sci U S A ; 120(42): e2309843120, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37812725

RESUMO

The burst firing of midbrain dopamine neurons releases a phasic dopamine signal that mediates reinforcement learning. At many synapses, however, high firing rates deplete synaptic vesicles (SVs), resulting in synaptic depression that limits release. What accounts for the increased release of dopamine by stimulation at high frequency? We find that adaptor protein-3 (AP-3) and its coat protein VPS41 promote axonal dopamine release by targeting vesicular monoamine transporter VMAT2 to the axon rather than dendrites. AP-3 and VPS41 also produce SVs that respond preferentially to high-frequency stimulation, independent of their role in axonal polarity. In addition, conditional inactivation of VPS41 in dopamine neurons impairs reinforcement learning, and this involves a defect in the frequency dependence of release rather than the amount of dopamine released. Thus, AP-3 and VPS41 promote the axonal polarity of dopamine release but enable learning by producing a distinct population of SVs tuned specifically to high firing frequency that confers the phasic release of dopamine.


Assuntos
Dopamina , Vesículas Sinápticas , Dopamina/metabolismo , Vesículas Sinápticas/metabolismo , Proteínas Vesiculares de Transporte de Monoamina/genética , Proteínas Vesiculares de Transporte de Monoamina/metabolismo , Axônios/metabolismo , Mesencéfalo/metabolismo
11.
Neurology ; 101(22): e2314-e2324, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37816639

RESUMO

BACKGROUND AND OBJECTIVES: There are limited validated biomarkers in Parkinson disease (PD) which substantially hinders the ability to monitor disease progression and consequently measure the efficacy of disease-modifying treatments. Imaging biomarkers, such as vesicular monoamine transporter type 2 (VMAT2) PET, enable enhanced diagnostic accuracy and detect early neurodegenerative changes associated with prodromal PD. This study sought to assess whether 18F-AV-133 VMAT2 PET is sensitive enough to monitor and quantify disease progression over a 2-year window. METHODS: 18F-AV-133 PET scans were performed on participants with PD and REM sleep behavior disorder (RBD) and neurologic controls (NC). All participants were scanned twice ∼26 months apart. Regional tracer retention was calculated with a primary visual cortex reference region and expressed as the standard uptake volume ratio. Regions of interest included caudate, anterior, and posterior putamen. At the time of scanning, participants underwent clinical evaluation including UPDRSMOTOR test, Sniffin' Sticks, and Hospital Anxiety and Depression Score. RESULTS: Over the 26-month interval, a significant decline in PET signal was observed in all 3 regions in participants with PD (N = 26) compared with NC (N = 12), consistent with a decrease in VMAT2 level and ongoing neurodegeneration. Imaging trajectory calculations suggest that the neurodegeneration in PD occurs over ∼33 years [CI: 27.2-39.5], with ∼10.5 years [CI: 9.1-11.3] of degeneration in the posterior putamen before it becomes detectable on a VMAT2 PET scan, a further ∼6.5 years [CI: 1.6-12.7] until symptom onset, and a further ∼3 years [CI: 0.3-8.7] until clinical diagnosis. DISCUSSION: Over a 2-year period, 18F-AV-133 VMAT2 PET was able to detect progression of nigrostriatal degeneration in participants with PD, and it represents a sensitive tool to identify individuals at risk of progression to PD, which are currently lacking using clinical readouts. Trajectory models propose that there is nigrostriatal degeneration occurring for 20 years before clinical diagnosis. These data demonstrate that VMAT2 PET provides a sensitive measure to monitor neurodegenerative progression of PD which has implications for PD diagnostics and subsequently clinical trial patient stratification and monitoring. CLASSIFICATION OF EVIDENCE: This study provides Class IV evidence that VMAT2 PET can detect patients with Parkinson disease and quantify progression over a 2-year window.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/complicações , Doença de Parkinson/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Proteínas Vesiculares de Transporte de Monoamina , Biomarcadores , Progressão da Doença
12.
Pharmacol Res Perspect ; 11(5): e01135, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37740715

RESUMO

The importance of vesicular monoamine transporter 2 (VMAT2) in dopamine regulation, which is considered crucial for neuropsychiatric disorders, is currently being studied. Moreover, the development of disease treatments using histone deacetylase (HDAC) inhibitors (HDACi) is actively progressing in various fields. Recently, research on the possibility of regulating neuropsychiatric disorders has been conducted. In this study, we evaluated whether VMAT2 expression increased by an HDACi can fine-tune neuropsychotic behavior, such as attention deficit hyperactivity disorder (ADHD) and protect against the cell toxicity through oxidized dopamine. First, approximately 300 candidate HDACi compounds were added to the SH-SY5Y dopaminergic cell line to identify the possible changes in the VMAT2 expression levels, which were measured using quantitative polymerase chain reaction. The results demonstrated, that treatment with pimelic diphenylamide 106 (TC-H 106), a class I HDACi, increased VMAT2 expression in both the SH-SY5Y cells and mouse brain. The increased VMAT2 expression induced by TC-H 106 alleviated the cytotoxicity attributed to 6-hydroxydopamine (6-OHDA) or 1-methyl-4-phenylpyridinium (MPP+ ) and free dopamine treatment. Moreover, dopamine concentrations, both intracellularly and in the synaptosomes, were significantly elevated by increased VMAT2 expression. These results suggest that dopamine concentration regulation by VMAT2 expression induced by TC-H 106 could alter several related behavioral aspects that was confirmed by attenuation of hyperactivity and impulsivity, which were major characteristics of animal model showing ADHD-like behaviors. These results indicate that HDACi-increased VMAT2 expression offers sufficient protections against dopaminergic cell death induced by oxidative stress. Thus, the epigenetic approach could be considered as therapeutic candidate for neuropsychiatric disease regulation.


Assuntos
Inibidores de Histona Desacetilases , Neuroblastoma , Humanos , Animais , Camundongos , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Proteínas Vesiculares de Transporte de Monoamina/genética , Citoproteção , Dopamina , Oxidopamina
13.
Toxicol Sci ; 196(1): 99-111, 2023 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-37607008

RESUMO

Parkinson's disease (PD) is the fastest-growing neurological disease worldwide, with increases outpacing aging and occurring most rapidly in recently industrialized areas, suggesting a role of environmental factors. Epidemiological, post-mortem, and mechanistic studies suggest that persistent organic pollutants, including the organochlorine pesticide dieldrin, increase PD risk. In mice, developmental dieldrin exposure causes male-specific exacerbation of neuronal susceptibility to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and synucleinopathy. Specifically, in the α-synuclein (α-syn) pre-formed fibril (PFF) model, exposure leads to increased deficits in striatal dopamine (DA) turnover and motor deficits on the challenging beam. Here, we hypothesized that alterations in DA handling contribute to the observed changes and assessed vesicular monoamine transporter 2 (VMAT2) function and DA release in this dieldrin/PFF 2-hit model. Female C57BL/6 mice were exposed to 0.3 mg/kg dieldrin or vehicle every 3 days by feeding, starting at 8 weeks of age and continuing throughout breeding, gestation, and lactation. Male offspring from independent litters underwent unilateral, intrastriatal injections of α-syn PFFs at 12 weeks of age, and vesicular 3H-DA uptake assays and fast-scan cyclic voltammetry were performed 4 months post-PFF injection. Dieldrin-induced an increase in DA release in striatal slices in PFF-injected animals, but no change in VMAT2 activity. These results suggest that developmental dieldrin exposure increases a compensatory response to synucleinopathy-triggered striatal DA loss. These findings are consistent with silent neurotoxicity, where developmental exposure to dieldrin primes the nigrostriatal striatal system to have an exacerbated response to synucleinopathy in the absence of observable changes in typical markers of nigrostriatal dysfunction and degeneration.


Assuntos
Doença de Parkinson , Praguicidas , Sinucleinopatias , Camundongos , Animais , Masculino , Feminino , alfa-Sinucleína/metabolismo , Dopamina , Dieldrin/toxicidade , Camundongos Endogâmicos C57BL , Praguicidas/toxicidade , Proteínas Vesiculares de Transporte de Monoamina , Transmissão Sináptica , Substância Negra/metabolismo
14.
J Biol Chem ; 299(8): 105063, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37468107

RESUMO

Amphetamines (AMPHs) are substrates of the dopamine transporter (DAT) and reverse the direction of dopamine (DA) transport. This has been suggested to depend on activation of Ca2+-dependent pathways, but the mechanism underlying reverse transport via endogenously expressed DAT is still unclear. Here, to enable concurrent visualization by live imaging of extracellular DA dynamics and cytosolic Ca2+ levels, we employ the fluorescent Ca2+ sensor jRGECO1a expressed in cultured dopaminergic neurons together with the fluorescent DA sensor GRABDA1H expressed in cocultured "sniffer" cells. In the presence of the Na+-channel blocker tetrodotoxin to prevent exocytotic DA release, AMPH induced in the cultured neurons a profound dose-dependent efflux of DA that was blocked both by inhibition of DAT with cocaine and by inhibition of the vesicular monoamine transporter-2 with Ro-4-1284 or reserpine. However, the AMPH-induced DA efflux was not accompanied by an increase in cytosolic Ca2+ and was unaffected by blockade of voltage-gated calcium channels or chelation of cytosolic Ca2+. The independence of cytosolic Ca2+ was further supported by activation of N-methyl-D-aspartate-type ionotropic glutamate receptors leading to a marked increase in cytosolic Ca2+ without affecting AMPH-induced DA efflux. Curiously, AMPH elicited spontaneous Ca2+ spikes upon blockade of the D2 receptor, suggesting that AMPH can regulate intracellular Ca2+ in an autoreceptor-dependent manner regardless of the apparent independence of Ca2+ for AMPH-induced efflux. We conclude that AMPH-induced DA efflux in dopaminergic neurons does not require cytosolic Ca2+ but is strictly dependent on the concerted action of AMPH on both vesicular monoamine transporter-2 and DAT.


Assuntos
Anfetamina , Proteínas da Membrana Plasmática de Transporte de Dopamina , Dopamina , Anfetamina/metabolismo , Anfetamina/farmacologia , Cocaína/metabolismo , Dopamina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Proteínas Vesiculares de Transporte de Monoamina , Humanos , Linhagem Celular Tumoral
15.
J Neurol ; 270(9): 4518-4522, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37301806

RESUMO

OBJECTIVES: We aimed to review our "real-world" experience with the vesicular monoamine transporter 2 (VMAT2) inhibitors tetrabenazine, deutetrabenazine, and valbenazine for treatment of Tourette syndrome, focusing on therapeutic benefits, side effect profile, and accessibility for the off-label use of these drugs. METHODS: We performed a retrospective chart review, supplemented with a telephone survey, of all our patients treated for their tics with VMAT2 inhibitors over a period of 4 years from January 2017 until January 2021. RESULTS: We identified 164 patients treated with the various VMAT2 inhibitors (tetrabenazine, n = 135; deutetrabenazine, n = 71; valbenazine, n = 20). Data on the mean treatment duration and daily dosages were collected. The response to VMAT2 inhibitors was assessed by a Likert scale by comparing the symptom severity before initiation and while on treatment. Side effects were mild and mostly consisted of depression as the major side effect but there was no suicidality reported. CONCLUSION: VMAT2 inhibitors are effective and safe in the treatment of tics associated with Tourette syndrome but are not readily accessible by patients in the United States, partly because of lack of approval by the Food and Drug Administration.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Discinesia Tardia , Tiques , Síndrome de Tourette , Humanos , Estados Unidos , Tetrabenazina/uso terapêutico , Tetrabenazina/farmacologia , Síndrome de Tourette/tratamento farmacológico , Tiques/tratamento farmacológico , Estudos Retrospectivos , Proteínas Vesiculares de Transporte de Monoamina
16.
Brain Nerve ; 75(5): 553-556, 2023 May.
Artigo em Japonês | MEDLINE | ID: mdl-37194530

RESUMO

Tardive dyskinesia (TD) is a serious, intractable, and potentially disabling side effect. Adjunctive drug treatment is used after optimizing the causative drugs. This article describes valbenazine, the first drug for treating TD that was recently approved in Japan, clonazepam, and vitamin E.


Assuntos
Discinesia Tardia , Humanos , Discinesia Tardia/tratamento farmacológico , Proteínas Vesiculares de Transporte de Monoamina , Japão
17.
Stem Cell Res Ther ; 14(1): 101, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37098639

RESUMO

The efficiency of inducing human embryonic stem cells into NEUROG3+ pancreatic endocrine cells is a bottleneck in stem cell therapy for diabetes. To understand the cell properties and fate decisions during differentiation, we analyzed the modified induction method using single-cell transcriptome and found that DAPT combined with four factors (4FS): nicotinamide, dexamethasone, forskolin and Alk5 inhibitor II (DAPT + 4FS) increased the expression of NEUROG3 to approximately 34.3%. The increased NEUROG3+ cells were mainly concentrated in Insulin + Glucagon + (INS + GCG+) and SLAC18A1 + Chromogranin A+(SLAC18A1 + CHGA +) populations, indicating that the increased NEUROG3+ cells promoted the differentiation of pancreatic endocrine cells and enterochromaffin-like cells. Single-cell transcriptome analysis provided valuable clues for further screening of pancreatic endocrine cells and differentiation of pancreatic islet cells. The gene set enrichment analysis (GSEA) suggest that we can try to promote the expression of INS + GCG+ population by up-regulating G protein-coupled receptor (GPCR) and mitogen-activated protein kinase signals and down-regulating Wnt, NIK/NF-KappaB and cytokine-mediated signal pathways. We can also try to regulate GPCR signaling through PLCE1, so as to increase the proportion of NEUROG3+ cells in INS+GCG+ populations. To exclude non-pancreatic endocrine cells, ALCAMhigh CD9low could be used as a marker for endocrine populations, and ALCAMhigh CD9lowCDH1low could remove the SLC18A1 + CHGA+ population.


Assuntos
Molécula de Adesão de Leucócito Ativado , Células Endócrinas , Humanos , Molécula de Adesão de Leucócito Ativado/genética , Molécula de Adesão de Leucócito Ativado/metabolismo , Inibidores da Agregação Plaquetária/metabolismo , Análise da Expressão Gênica de Célula Única , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proteínas do Tecido Nervoso/metabolismo , Diferenciação Celular/genética , Glucagon , Células Endócrinas/metabolismo , Proteínas Vesiculares de Transporte de Monoamina/genética , Proteínas Vesiculares de Transporte de Monoamina/metabolismo
18.
Adv Neurobiol ; 30: 101-129, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36928847

RESUMO

Monoamine transporters (MATs) are targets of a wide range of compounds that have been developed as therapeutic treatments for various neuropsychiatric and neurodegenerative disorders such as depression, ADHD, neuropathic pain, anxiety disorders, stimulant use disorders, epilepsy, and Parkinson's disease. The MAT family is comprised of three main members - the dopamine transporter (DAT), the norepinephrine transporter (NET), and the serotonin transporter (SERT). These transporters are through reuptake responsible for the clearance of their respective monoamine substrates from the extracellular space. The determination of X-ray crystal structures of MATs and their homologues bound with various substrates and ligands has resulted in a surge of structure-function-based studies of MATs to understand the molecular basis of transport function and the mechanism of various ligands that ultimately result in their behavioral effects. This review focusses on recent examples of ligand-based structure-activity relationship studies trying to overcome some of the challenges associated with previously developed MAT inhibitors. These studies have led to the discovery of unique and novel structurally diverse MAT ligands including allosteric modulators. These novel molecular scaffolds serve as leads for designing more effective therapeutic interventions by modulating the activities of MATs and ultimately their associated neurotransmission and behavioral effects.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Serotonina , Proteínas Vesiculares de Transporte de Monoamina , Humanos , Transporte Biológico , Ligantes , Proteínas da Membrana Plasmática de Transporte de Serotonina/química , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Proteínas Vesiculares de Transporte de Monoamina/química , Proteínas Vesiculares de Transporte de Monoamina/efeitos dos fármacos , Transtornos Mentais/tratamento farmacológico , Descoberta de Drogas
19.
Int J Neurosci ; 133(5): 574-577, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-34078222

RESUMO

Background: The monoamine neurotransmitter disorders are neurometabolic syndromes caused by disturbances in the synthesis, transport and metabolism of the biogenic amines (the catecholamines dopamine, norepinephrine and epinephrine; serotonin), which are increasingly recognized as an expanding group of inherited neurometabolic syndromes.Case Description: A 6-month-old male infant who presented with developmental delay and suspected cerebral palsy was diagnosed with infantile parkinsonism-dystonia-2 (MIM: 618049). The whole-exome sequencing identified a homozygous c.710C > T (p.Pro237His) transition in the monoamine transporter gene SLC18A2, which was due to paternal uniparental disomy (UPD) of chromosome 10p15.3q26.3, resulting in brain dopamine-serotonin vesicular transport disease. Sanger sequencing confirmed that his unaffected father carried the same mutation in the heterozygous state, while his mother did not carry the same mutation. Autosomal recessive gene mutations in SLC18A2 has been identified in three families in different countries. The infant was treated with pramipexole, a dopamine agonist, and the static tremor was better compared with that before treatment, but the movement disorder was not significantly improved.Conclusion: This case confirmed the causal mutation of SLC18A2 gene and brain dopamine-serotonin vesicular transport disease, which suggested the mechanism of UPD homozygous formation, and confirmed that dopamine agonist treatment could improve some symptoms in affected individuals.


Assuntos
Distonia , Doença de Parkinson , Lactente , Humanos , Masculino , Dopamina/metabolismo , Agonistas de Dopamina , Serotonina , Mutação/genética , Proteínas Vesiculares de Transporte de Monoamina/genética
20.
Clin Pharmacol Drug Dev ; 12(4): 447-456, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36530055

RESUMO

Valbenazine and deutetrabenazine are vesicular monoamine transporter 2 (VMAT2) inhibitors approved for tardive dyskinesia. The clinical activity of valbenazine is primarily attributed to its only dihydrotetrabenazine (HTBZ) metabolite, [+]-α-HTBZ. Deutetrabenazine is a deuterated form of tetrabenazine and is metabolized to four deuterated HTBZ metabolites: [+]-α-deuHTBZ, [+]-ß-deuHTBZ, [-]-α-deuHTBZ, and [-]-ß-deuHTBZ. An open-label, crossover study characterized the pharmacokinetic profiles of the individual deuHBTZ metabolites, which have not been previously reported. VMAT2 inhibition and off-target interactions of the deuHTBZ metabolites were evaluated using radioligand binding. The only valbenazine HTBZ metabolite, [+]-α-HTBZ, was a potent VMAT2 inhibitor, with negligible affinity for off-target dopamine, serotonin, and adrenergic receptors. Following deutetrabenazine administration, [-]-α-deuHTBZ represented 66% of circulating deuHTBZ metabolites and was a relatively weak VMAT2 inhibitor with appreciable affinity for dopamine (D2S , D3 ) and serotonin (5-HT1A , 5-HT2B , 5-HT7 ) receptors. [+]-ß-deuHTBZ was the most abundant deuHTBZ metabolite that potently inhibited VMAT2, but it represented only 29% of total circulating deuHTBZ metabolites. The mean half-life of [+]-α-HTBZ (22.2 hours) was ∼3× longer than that of [+]-ß-deuHTBZ (7.7 hours). These findings are similar to studies with tetrabenazine, in that deutetrabenazine is metabolized to four deuHTBZ stereoisomers, the most abundant of which has negligible interaction with VMAT2 in vitro and appreciable affinity for several off-target receptors. In contrast, valbenazine's single HTBZ metabolite is a potent VMAT2 inhibitor in vitro with no discernible off-target activity. Determination of the effects of intrinsic/extrinsic variables on deutetrabenazine's safety/efficacy profile should incorporate assessment of the effects on all deuHTBZ metabolites.


Assuntos
Serotonina , Tetrabenazina , Humanos , Estudos Cross-Over , Dopamina , Proteínas Vesiculares de Transporte de Monoamina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...